This document lists all the routines in the Fortran Library in order of functionality.
| Second-order Sturm–Liouville problems: |
|
| regular system, finite range, user-specified break-points: |
|
| eigenvalue only |
D02KAF |
| regular/singular system, finite/infinite range: |
|
| eigenvalue and eigenfunction |
D02KEF |
| eigenvalue only |
D02KDF |
| System of first-order ordinary differential equations, initial value problems: |
|
|
C
1
-interpolant
|
D02XKF |
| comprehensive integrator routines for stiff systems: |
|
| explicit ODEs (reverse communication): |
|
| full Jacobian |
D02NMF |
| explicit ODEs: |
|
| banded Jacobian |
D02NCF |
| full Jacobian |
D02NBF |
| sparse Jacobian |
D02NDF |
| implicit ODEs coupled with algebraic equations (reverse communication) |
D02NNF |
| implicit ODEs coupled with algebraic equations: |
|
| banded Jacobian |
D02NHF |
| full Jacobian |
D02NGF |
| sparse Jacobian |
D02NJF |
| comprehensive integrator routines using Adams method with root-finding option: |
|
| diagnostic routine
|
D02QXF |
| diagnostic routine for root-finding |
D02QYF |
| forward communication |
D02QFF |
| interpolant |
D02QZF |
| reverse communication |
D02QGF |
| set-up routine
|
D02QWF |
| comprehensive integrator routines using Runge–Kutta methods: |
|
| diagnostic routine
|
D02PYF |
| diagnostic routine for global error assessment |
D02PZF |
| interpolant |
D02PXF |
| over a range with intermediate output |
D02PCF |
| over a step |
D02PDF |
| reset end of range |
D02PWF |
| set-up routine
|
D02PVF |
| compute weighted norm of local error estimate |
D02ZAF |
| enquiry routine for use with sparse Jacobian |
D02NRF |
| integrator diagnostic routine
|
D02NYF |
| integrator set-up for BDF method |
D02NVF |
| integrator set-up for Blend method |
D02NWF |
| integrator set-up for DASSL method |
D02MVF |
| linear algebra diagnostic routine for sparse Jacobians |
D02NXF |
| linear algebra set-up for banded Jacobians |
D02NTF |
| linear algebra set-up for full Jacobians |
D02NSF |
| linear algebra set-up for sparse Jacobians |
D02NUF |
| natural interpolant |
D02MZF |
| natural interpolant (for use by MONITR subroutine) |
D02XJF |
| set-up routine for continuation calls to integrator |
D02NZF |
| simple driver routines: |
|
| Runge–Kutta–Merson method: |
|
| until (optionally) a function of the solution is zero, with optional intermediate output |
D02BJF |
| until a function of the solution is zero |
D02BHF |
| until a specified component attains a given value |
D02BGF |
| variable-order variable-step Adams method: |
|
| until (optionally) a function of the solution is zero, with optional intermediate output |
D02CJF |
| variable-order variable-step BDF method for stiff systems: |
|
| until (optionally) a function of the solution is zero, with optional intermediate output |
D02EJF |
| System of ordinary differential equations, boundary value problems: |
|
| collocation and least-squares: |
|
| single
n
th-order linear equation
|
D02JAF |
| system of first-order linear equations |
D02JBF |
| system of
n
th-order linear equations
|
D02TGF |
| comprehensive routines using a collocation technique: |
|
| continuation routine
|
D02TXF |
| diagnostic routine
|
D02TZF |
| general nonlinear problem solver |
D02TKF |
| interpolation routine
|
D02TYF |
| set-up routine
|
D02TVF |
| finite difference technique with deferred correction: |
|
| general linear problem |
D02GBF |
| general nonlinear problem, with continuation facility |
D02RAF |
| simple nonlinear problem |
D02GAF |
| shooting and matching technique: |
|
| boundary values to be determined |
D02HAF |
| general parameters to be determined |
D02HBF |
| general parameters to be determined, allowing interior matching-point |
D02AGF |
| general parameters to be determined, subject to extra algebraic equations |
D02SAF |
| System of second-order ordinary differential equations: |
|
| Runge–Kutta–Nystrom method: |
|
| diagnostic routine
|
D02LYF |
| integrator |
D02LAF |
| interpolating solutions |
D02LZF |
| set-up routine
|
D02LXF |
| Constrained minimum of a sum of squares, nonlinear constraints, |
|
| using function values and optionally first derivatives, sequential QP method, |
|
| forward communication (dense) |
E04USF/E04USA |
| Convex QP problem or linearly-constrained linear least-squares problem (dense) |
E04NCF/E04NCA |
| Linear programming (LP) problem (dense) |
E04MFF/E04MFA |
|
LP or QP problem (sparse)
|
E04NQF |
| Minimum, function of one variable, |
|
| using first derivative |
E04BBF/E04BBA |
| using function values only |
E04ABF/E04ABA |
| Minimum, function of several variables, nonlinear constraints (comprehensive), |
|
| using function values and optionally first derivatives, sequential QP method, |
|
| forward communication (dense) |
E04WDF |
| forward communication (sparse) |
E04UGF/E04UGA |
| forward communication (sparse) |
E04VHF |
| reverse communication (dense) |
E04UFF/E04UFA |
| using second derivatives, |
|
| combined Gauss–Newton and modified Newton algorithm |
E04HYF |
| Minimum, function of several variables, simple bounds (comprehensive), |
|
| using first and second derivatives, modified Newton algorithm |
E04LBF |
| using first derivatives, modified Newton algorithm |
E04KDF |
| Minimum, function of several variables, simple bounds (easy-to-use), |
|
| using first and second derivatives, modified Newton algorithm |
E04LYF |
| using first derivatives, |
|
| modified Newton algorithm |
E04KZF |
| quasi-Newton algorithm |
E04KYF |
| using function values only, quasi-Newton algorithm |
E04JYF |
| Quadratic programming (QP) problem (dense) |
E04NFF/E04NFA |
| Service routines: |
|
| check user's routine for calculating: |
|
| first derivatives of function |
E04HCF |
| Hessian of a sum of squares |
E04YBF |
| Jacobian of first derivatives |
E04YAF |
| second derivatives of function |
E04HDF |
| check user's routines calculating first derivatives of function and constraints |
E04ZCF/E04ZCA |
| convert MPSX data file defining LP or QP problem to format required by E04NQF
|
E04MZF |
| covariance matrix for nonlinear least-squares problem |
E04YCF |
| determine Jacobian sparsity structure before a call of E04VHF
|
E04VJF |
| estimate gradient and/or Hessian of a function |
E04XAF/E04XAA |
| Initialization routine for: |
|
|
E04NQF
|
E04NPF |
|
E04VHF
|
E04VGF |
|
E04DGA, E04MFA, E04NCA, E04NFA, E04UFA, E04UGA and E04USA
|
E04WBF |
|
E04WDF
|
E04WCF |
| retrieve INTEGER optional parameter values used by: |
|
|
E04NQF
|
E04NXF |
|
E04NQF
|
E04NYF |
|
E04VHF
|
E04VRF |
|
E04VHF
|
E04VSF |
|
E04WDF
|
E04WKF |
|
E04WDF
|
E04WLF |
| supply INTEGER optional parameter values to: |
|
|
E04NQF
|
E04NTF |
|
E04NQF
|
E04NUF |
|
E04VHF
|
E04VMF |
|
E04VHF
|
E04VNF |
|
E04WDF
|
E04WGF |
|
E04WDF
|
E04WHF |
| supply optional parameter values from external file for: |
|
|
E04DGF/E04DGA
|
E04DJF/E04DJA |
|
E04MFF/E04MFA
|
E04MGF/E04MGA |
|
E04NCF/E04NCA
|
E04NDF/E04NDA |
|
E04NFF/E04NFA
|
E04NGF/E04NGA |
|
E04NQF
|
E04NRF |
|
E04UCF/E04UCA
|
E04UDF/E04UDA |
|
E04UGF/E04UGA
|
E04UHF/E04UHA |
|
E04USF/E04USA
|
E04UQF/E04UQA |
|
E04VHF
|
E04VKF |
|
E04WDF
|
E04WEF |
| supply optional parameter values to, |
|
|
E04UGF/E04UGA
|
E04UJF/E04UJA |
| supply optional parameter values to: |
|
|
E04DGF/E04DGA
|
E04DKF/E04DKA |
|
E04MFF/E04MFA
|
E04MHF/E04MHA |
|
E04NCF/E04NCA
|
E04NEF/E04NEA |
|
E04NFF/E04NFA
|
E04NHF/E04NHA |
|
E04NQF
|
E04NSF |
|
E04UCF/E04UCA
|
E04UEF/E04UEA |
|
E04USF/E04USA
|
E04URF/E04URA |
|
E04VHF
|
E04VLF |
|
E04WDF
|
E04WFF |
|
E04WDF
|
E04WJF |
| Unconstrained minimum of a sum of squares (comprehensive): |
|
| using first derivatives, |
|
| combined Gauss–Newton and modified Newton algorithm |
E04GDF |
| combined Gauss–Newton and quasi-Newton algorithm |
E04GBF |
| using function values only, |
|
| combined Gauss–Newton and modified Newton algorithm |
E04FCF |
| using second derivatives, |
|
| combined Gauss–Newton and modified Newton algorithm |
E04HEF |
| Unconstrained minimum of a sum of squares (easy-to-use): |
|
| using first derivatives, |
|
| combined Gauss–Newton and modified Newton algorithm |
E04GZF |
| combined Gauss–Newton and quasi-Newton algorithm |
E04GYF |
| using function values only, |
|
| combined Gauss–Newton and modified Newton algorithm |
E04FYF |
| Unconstrained minimum, function of several variables (comprehensive): |
|
| using first derivatives, pre-conditioned conjugate gradient algorithm |
E04DGF/E04DGA |
| using function values only, simplex algorithm |
E04CCF/E04CCA |
| Level 0 (Scalar) operations: |
|
| Complex numbers: |
|
| apply similarity rotation to 2 by 2 Hermitian matrix |
F06CHF |
| generate a plane rotation, storing the tangent, real cosine |
F06CAF |
| generate a plane rotation, storing the tangent, real sine |
F06CBF |
| quotient of two numbers, with overflow flag |
F06CLF |
| recover cosine and sine from given tangent, real cosine |
F06CCF |
| recover cosine and sine from given tangent, real sine |
F06CDF |
| Real numbers: |
|
| apply similarity rotation to 2 by 2 symmetric matrix |
F06BHF |
| compute
(a2+b2)
1
/
2
|
F06BNF |
| compute Euclidean norm from scaled form |
F06BMF |
| eigenvalue of 2 by 2 symmetric matrix |
F06BPF |
| generate a Jacobi plane rotation |
F06BEF |
| generate a plane rotation |
F06AAF (DROTG) |
| generate a plane rotation storing the tangent |
F06BAF |
| quotient of two numbers, with overflow flag |
F06BLF |
| recover cosine and sine from given tangent |
F06BCF |
| Level 1 (Vector) operations: |
|
| Complex vector(s), |
|
| add scalar times a vector to another vector |
F06GCF (ZAXPY) |
| apply a complex plane rotation |
F06HPF |
| apply a real plane rotation |
F06KPF |
| apply an elementary reflection to a vector |
F06HTF |
| broadcast a scalar into a vector |
F06HBF |
| copy a real vector to a complex vector |
F06KFF |
| copy a vector |
F06GFF (ZCOPY) |
| dot product of two vectors, conjugated |
F06GBF (ZDOTC) |
| dot product of two vectors, unconjugated |
F06GAF (ZDOTU) |
| Euclidean norm of a vector |
F06JJF (DZNRM2) |
| generate a sequence of plane rotations |
F06HQF |
| generate an elementary reflection |
F06HRF |
| index of element of largest absolute value |
F06JMF (IZAMAX) |
| multiply vector by a complex scalar |
F06GDF (ZSCAL) |
| multiply vector by a complex scalar, preserving input vector |
F06HDF |
| multiply vector by a real scalar |
F06JDF (ZDSCAL) |
| multiply vector by a real scalar, preserving input vector |
F06KDF |
| multiply vector by complex diagonal matrix |
F06HCF |
| multiply vector by real diagonal matrix |
F06KCF |
| multiply vector by reciprocal of a real scalar |
F06KEF (ZDRSCL) |
| negate a vector |
F06HGF |
| sum of absolute values of vector-elements |
F06JKF (DZASUM) |
| swap two vectors |
F06GGF (ZSWAP) |
| update Euclidean norm in scaled form |
F06KJF |
| Integer vector(s), |
|
| broadcast a scalar into a vector |
F06DBF |
| copy a vector |
F06DFF |
| Real vector(s), |
|
| add scalar times a vector to another vector |
F06ECF (DAXPY) |
| apply a symmetric plane rotation to two vectors |
F06FPF |
| apply an elementary reflection to a vector (Linpack style) |
F06FUF |
| apply an elementary reflection to a vector (NAG style) |
F06FTF |
| apply plane rotation |
F06EPF (DROT) |
| broadcast a scalar into a vector |
F06FBF |
| copy a vector |
F06EFF (DCOPY) |
| cosine of angle between two vectors |
F06FAF |
| dot product of two vectors |
F06EAF (DDOT) |
| elements of largest and smallest absolute value |
F06FLF |
| Euclidean norm of a vector |
F06EJF (DNRM2) |
| generate a sequence of plane rotations |
F06FQF |
| generate an elementary reflection (Linpack style) |
F06FSF |
| generate an elementary reflection (NAG style) |
F06FRF |
| index of element of largest absolute value |
F06JLF (IDAMAX) |
| index of last non-negligible element |
F06KLF |
| multiply vector by a scalar |
F06EDF (DSCAL) |
| multiply vector by a scalar, preserving input vector |
F06FDF |
| multiply vector by diagonal matrix |
F06FCF |
| multiply vector by reciprocal of a scalar |
F06FEF (DRSCL) |
| negate a vector |
F06FGF |
| sum of absolute values of vector-elements |
F06EKF (DASUM) |
| swap two vectors |
F06EGF (DSWAP) |
| update Euclidean norm in scaled form |
F06FJF |
| weighted Euclidean norm of a vector |
F06FKF |
| Level 2 (Matrix-vector and matrix) operations: |
|
| Complex matrix and vector(s), |
|
| apply sequence of plane rotations to a rectangular matrix: |
|
| complex cosine, real sine |
F06TYF |
| real cosine and sine |
F06VXF |
| real cosine, complex sine |
F06TXF |
| compute a norm or the element of largest absolute value: |
|
| band matrix |
F06UBF |
| general matrix |
F06UAF |
| Hermitian band matrix |
F06UEF |
| Hermitian matrix |
F06UCF |
| Hermitian matrix, packed form |
F06UDF |
| Hermitian tridiagonal matrix |
F06UPF |
| Hessenberg matrix |
F06UMF |
| symmetric band matrix |
F06UHF |
| symmetric matrix |
F06UFF |
| symmetric matrix, packed form |
F06UGF |
| trapezoidal matrix |
F06UJF |
| triangular band matrix |
F06ULF |
| triangular matrix, packed form |
F06UKF |
| tridiagonal matrix |
F06UNF |
| compute upper Hessenberg matrix by applying sequence of plane rotations to an upper triangular matrix |
F06TVF |
| compute upper spiked matrix by applying sequence of plane rotations to an upper triangular matrix |
F06TWF |
| matrix initialization |
F06THF |
| matrix-vector product, |
|
| Hermitian band matrix |
F06SDF (ZHBMV) |
| Hermitian matrix |
F06SCF (ZHEMV) |
| Hermitian packed matrix |
F06SEF (ZHPMV) |
| rectangular band matrix |
F06SBF (ZGBMV) |
| rectangular matrix |
F06SAF (ZGEMV) |
| symmetric matrix |
F06TAF (ZSYMV) |
| symmetric packed matrix |
F06TCF (ZSPMV) |
| triangular band matrix |
F06SGF (ZTBMV) |
| triangular matrix |
F06SFF (ZTRMV) |
| triangular packed matrix |
F06SHF (ZTPMV) |
| permute rows or columns of a matrix: |
|
| permutations represented by a real array |
F06VKF |
| permutations represented by an integer array |
F06VJF |
|
Q
R
factorization by sequence of plane rotations:
|
|
| of rank-1 update of upper triangular matrix |
F06TPF |
| of upper triangular matrix augmented by a full row |
F06TQF |
|
Q
R
factorization of
U
Z
or
R
Q
factorization of
Z
U
, where
U
is upper triangular and
Z
is a sequence of plane rotations
|
F06TTF |
|
Q
R
or
R
Q
factorization by sequence of plane rotations:
|
|
| of upper Hessenberg matrix |
F06TRF |
| of upper spiked matrix |
F06TSF |
| rank-1 update, |
|
| Hermitian matrix |
F06SPF (ZHER) |
| Hermitian packed matrix |
F06SQF (ZHPR) |
| rectangular matrix, conjugated vector |
F06SNF (ZGERC) |
| rectangular matrix, unconjugated vector |
F06SMF (ZGERU) |
| symmetric matrix |
F06TBF (ZSYR) |
| symmetric packed matrix |
F06TDF (ZSPR) |
| rank-2 update, |
|
| Hermitian matrix |
F06SRF (ZHER2) |
| Hermitian packed matrix |
F06SSF (ZHPR2) |
| matrix copy, rectangular or trapezoidal |
F06TFF |
| solution of a system of equations: |
|
| triangular band matrix |
F06SKF (ZTBSV) |
| triangular matrix |
F06SJF (ZTRSV) |
| triangular packed matrix |
F06SLF (ZTPSV) |
| unitary similarity transformation of a Hermitian matrix, |
|
| as sequence of plane rotations |
F06TMF |
| Real matrix and vector(s), |
|
| apply sequence of plane rotations to a rectangular matrix |
F06QXF |
| compute a norm or the element of largest absolute value: |
|
| band matrix |
F06RBF |
| general matrix |
F06RAF |
| Hessenberg matrix |
F06RMF |
| matrix initialization |
F06QHF |
| symmetric band matrix |
F06REF |
| symmetric matrix |
F06RCF |
| symmetric matrix, packed form |
F06RDF |
| symmetric tridiagonal matrix |
F06RPF |
| trapezoidal matrix |
F06RJF |
| triangular band matrix |
F06RLF |
| triangular matrix, packed form |
F06RKF |
| tridiagonal matrix |
F06RNF |
| compute upper Hessenberg matrix by applying sequence of plane rotations to an upper triangular matrix |
F06QVF |
| compute upper spiked matrix by applying sequence of plane rotations to an upper triangular matrix |
F06QWF |
| matrix-vector product, |
|
| rectangular band matrix |
F06PBF (DGBMV) |
| rectangular matrix |
F06PAF (DGEMV) |
| symmetric band matrix |
F06PDF (DSBMV) |
| symmetric matrix |
F06PCF (DSYMV) |
| symmetric packed matrix |
F06PEF (DSPMV) |
| triangular band matrix |
F06PGF (DTBMV) |
| triangular matrix |
F06PFF (DTRMV) |
| triangular packed matrix |
F06PHF (DTPMV) |
| orthogonal similarity transformation of a symmetric matrix, |
|
| as sequence of plane rotations |
F06QMF |
| permute rows or columns of a matrix: |
|
| permutations represented by a real array |
F06QKF |
| permutations represented by an integer array |
F06QJF |
|
Q
R
factorization by sequence of plane rotations:
|
|
| of rank-1 update of upper triangular matrix |
F06QPF |
| of upper triangular matrix augmented by a full row |
F06QQF |
|
Q
R
factorization of
U
Z
or
R
Q
factorization of
Z
U
, where
U
is upper triangular and
Z
is a sequence of plane rotations
|
F06QTF |
|
Q
R
or
R
Q
factorization by sequence of plane rotations:
|
|
| of upper Hessenberg matrix |
F06QRF |
| of upper spiked matrix |
F06QSF |
| rank-1 update, |
|
| rectangular matrix |
F06PMF (DGER) |
| symmetric matrix |
F06PPF (DSYR) |
| symmetric packed matrix |
F06PQF (DSPR) |
| rank-2 update, |
|
| matrix copy, rectangular or trapezoidal |
F06QFF |
| symmetric matrix |
F06PRF (DSYR2) |
| symmetric packed matrix |
F06PSF (DSPR2) |
| solution of system of equations, |
|
| triangular band matrix |
F06PKF (DTBSV) |
| triangular matrix |
F06PJF (DTRSV) |
| triangular packed matrix |
F06PLF (DTPSV) |
| Level 3 (Matrix-matrix) operations: |
|
| Complex matrices: |
|
| matrix-matrix product: |
|
| one matrix Hermitian |
F06ZCF (ZHEMM) |
| one matrix symmetric |
F06ZTF (ZSYMM) |
| triangular matrix |
F06ZFF (ZTRMM) |
| two rectangular matrices |
F06ZAF (ZGEMM) |
| rank-
2
k
update:
|
|
| of a Hermitian matrix |
F06ZRF (ZHER2K) |
| of a symmetric matrix |
F06ZWF (ZSYR2K) |
| rank-
k
update:
|
|
| of a Hermitian matrix |
F06ZPF (ZHERK) |
| of a symmetric matrix |
F06ZUF (ZSYRK) |
| solution of triangular systems of equations |
F06ZJF (ZTRSM) |
| Real matrices: |
|
| matrix-matrix product: |
|
| one matrix symmetric |
F06YCF (DSYMM) |
| one matrix triangular |
F06YFF (DTRMM) |
| rectangular matrices |
F06YAF (DGEMM) |
| rank-
2
k
update of a symmetric matrix
|
F06YRF (DSYR2K) |
| rank-
k
update of a symmetric matrix
|
F06YPF (DSYRK) |
| solution of triangular systems of equations |
F06YJF (DTRSM) |
| Sparse level 1 (vector) operations: |
|
| Complex vectors: |
|
| add scalar times sparse vector to another sparse vector |
F06GTF (ZAXPYI) |
| dot product of two sparse vectors (conjugated) |
F06GSF (ZDOTCI) |
| dot product of two sparse vectors (unconjugated) |
F06GRF (ZDOTUI) |
| gather and set to zero a sparse vector |
F06GVF (ZGTHRZ) |
| gather sparse vector |
F06GUF (ZGTHR) |
| scatter sparse vector |
F06GWF (ZSCTR) |
| Real vectors: |
|
| add scalar times sparse vector to another sparse vector |
F06ETF (DAXPYI) |
| apply plane rotation to two sparse vectors |
F06EXF (DROTI) |
| dot product of two sparse vectors |
F06ERF (DDOTI) |
| gather and set to zero a sparse vector |
F06EVF (DGTHRZ) |
| gather sparse vector |
F06EUF (DGTHR) |
| scatter sparse vector |
F06EWF (DSCTR) |
| Apply iterative refinement to the solution and compute error estimates: |
|
| after factorizing the matrix of coefficients: |
|
| complex band matrix |
F07BVF (ZGBRFS) |
| complex Hermitian indefinite matrix |
F07MVF (ZHERFS) |
| complex Hermitian indefinite matrix, packed storage |
F07PVF (ZHPRFS) |
| complex Hermitian positive-definite band matrix |
F07HVF (ZPBRFS) |
| complex Hermitian positive-definite matrix |
F07FVF (ZPORFS) |
| complex Hermitian positive-definite matrix, packed storage |
F07GVF (ZPPRFS) |
| complex Hermitian positive-definite tridiagonal matrix |
F07JVF (ZPTRFS) |
| complex matrix |
F07AVF (ZGERFS) |
| complex symmetric indefinite matrix |
F07NVF (ZSYRFS) |
| complex symmetric indefinite matrix, packed storage |
F07QVF (ZSPRFS) |
| complex tridiagonal matrix |
F07CVF (ZGTRFS) |
| real band matrix |
F07BHF (DGBRFS) |
| real matrix |
F07AHF (DGERFS) |
| real symmetric indefinite matrix |
F07MHF (DSYRFS) |
| real symmetric indefinite matrix, packed storage |
F07PHF (DSPRFS) |
| real symmetric positive-definite band matrix |
F07HHF (DPBRFS) |
| real symmetric positive-definite matrix |
F07FHF (DPORFS) |
| real symmetric positive-definite matrix, packed storage |
F07GHF (DPPRFS) |
| real symmetric positive-definite tridiagonal matrix |
F07JHF (DPTRFS) |
| real tridiagonal matrix |
F07CHF (DGTRFS) |
| Compute error estimates: |
|
| complex triangular band matrix |
F07VVF (ZTBRFS) |
| complex triangular matrix |
F07TVF (ZTRRFS) |
| complex triangular matrix, packed storage |
F07UVF (ZTPRFS) |
| real triangular band matrix |
F07VHF (DTBRFS) |
| real triangular matrix |
F07THF (DTRRFS) |
| real triangular matrix, packed storage |
F07UHF (DTPRFS) |
| Compute row and column scalings |
|
| complex band matrix |
F07BTF (ZGBEQU) |
| complex Hermitian positive-definite band matrix |
F07HTF (ZPBEQU) |
| complex Hermitian positive-definite matrix |
F07FTF (ZPOEQU) |
| complex Hermitian positive-definite matrix, packed storage |
F07GTF (ZPPEQU) |
| complex matrix |
F07ATF (ZGEEQU) |
| real band matrix |
F07BFF (DGBEQU) |
| real matrix |
F07AFF (DGEEQU) |
| real symmetric positive-definite band matrix |
F07HFF (DPBEQU) |
| real symmetric positive-definite matrix |
F07FFF (DPOEQU) |
| real symmetric positive-definite matrix, packed storage |
F07GFF (DPPEQU) |
| Condition number estimation: |
|
| after factorizing the matrix of coefficients: |
|
| complex band matrix |
F07BUF (ZGBCON) |
| complex Hermitian indefinite matrix |
F07MUF (ZHECON) |
| complex Hermitian indefinite matrix, packed storage |
F07PUF (ZHPCON) |
| complex Hermitian positive-definite band matrix |
F07HUF (ZPBCON) |
| complex Hermitian positive-definite matrix |
F07FUF (ZPOCON) |
| complex Hermitian positive-definite matrix, packed storage |
F07GUF (ZPPCON) |
| complex Hermitian positive-definite tridiagonal matrix |
F07JUF (ZPTCON) |
| complex matrix |
F07AUF (ZGECON) |
| complex symmetric indefinite matrix |
F07NUF (ZSYCON) |
| complex symmetric indefinite matrix, packed storage |
F07QUF (ZSPCON) |
| complex tridiagonal matrix |
F07CUF (ZGTCON) |
| real band matrix |
F07BGF (DGBCON) |
| real matrix |
F07AGF (DGECON) |
| real symmetric indefinite matrix |
F07MGF (DSYCON) |
| real symmetric indefinite matrix, packed storage |
F07PGF (DSPCON) |
| real symmetric positive-definite band matrix |
F07HGF (DPBCON) |
| real symmetric positive-definite matrix |
F07FGF (DPOCON) |
| real symmetric positive-definite matrix, packed storage |
F07GGF (DPPCON) |
| real symmetric positive-definite tridiagonal matrix |
F07JGF (DPTCON) |
| real tridiagonal matrix |
F07CGF (DGTCON) |
| complex triangular band matrix |
F07VUF (ZTBCON) |
| complex triangular matrix |
F07TUF (ZTRCON) |
| complex triangular matrix, packed storage |
F07UUF (ZTPCON) |
| real triangular band matrix |
F07VGF (DTBCON) |
| real triangular matrix |
F07TGF (DTRCON) |
| real triangular matrix, packed storage |
F07UGF (DTPCON) |
|
L
×
D
×
L
′
factorization:
|
|
| complex Hermitian positive-definite tridiagonal matrix |
F07JRF (ZPTTRF) |
| real symmetric positive-definite tridiagonal matrix |
F07JDF (DPTTRF) |
|
L
LT
or
UT
U
factorization:
|
|
| complex Hermitian positive-definite band matrix |
F07HRF (ZPBTRF) |
| complex Hermitian positive-definite matrix |
F07FRF (ZPOTRF) |
| complex Hermitian positive-definite matrix, packed storage |
F07GRF (ZPPTRF) |
| real symmetric positive-definite band matrix |
F07HDF (DPBTRF) |
| real symmetric positive-definite matrix |
F07FDF (DPOTRF) |
| real symmetric positive-definite matrix, packed storage |
F07GDF (DPPTRF) |
|
L
U
factorization:
|
|
| complex band matrix |
F07BRF (ZGBTRF) |
| complex matrix |
F07ARF (ZGETRF) |
| complex tridiagonal matrix |
F07CRF (ZGTTRF) |
| real band matrix |
F07BDF (DGBTRF) |
| real matrix |
F07ADF (DGETRF) |
| real tridiagonal matrix |
F07CDF (DGTTRF) |
| Matrix inversion: |
|
| after factorizing the matrix of coefficients: |
|
| complex Hermitian indefinite matrix |
F07MWF (ZHETRI) |
| complex Hermitian indefinite matrix, packed storage |
F07PWF (ZHPTRI) |
| complex Hermitian positive-definite matrix |
F07FWF (ZPOTRI) |
| complex Hermitian positive-definite matrix, packed storage |
F07GWF (ZPPTRI) |
| complex matrix |
F07AWF (ZGETRI) |
| complex symmetric indefinite matrix |
F07NWF (ZSYTRI) |
| complex symmetric indefinite matrix, packed storage |
F07QWF (ZSPTRI) |
| real matrix |
F07AJF (DGETRI) |
| real symmetric indefinite matrix |
F07MJF (DSYTRI) |
| real symmetric indefinite matrix, packed storage |
F07PJF (DSPTRI) |
| real symmetric positive-definite matrix |
F07FJF (DPOTRI) |
| real symmetric positive-definite matrix, packed storage |
F07GJF (DPPTRI) |
| complex triangular matrix |
F07TWF (ZTRTRI) |
| complex triangular matrix, packed storage |
F07UWF (ZTPTRI) |
| real triangular matrix |
F07TJF (DTRTRI) |
| real triangular matrix, packed storage |
F07UJF (DTPTRI) |
|
P
L
D
LT
PT
or
P
U
D
UT
PT
factorization:
|
|
| complex Hermitian indefinite matrix |
F07MRF (ZHETRF) |
| complex Hermitian indefinite matrix, packed storage |
F07PRF (ZHPTRF) |
| complex symmetric indefinite matrix |
F07NRF (ZSYTRF) |
| complex symmetric indefinite matrix, packed storage |
F07QRF (ZSPTRF) |
| real symmetric indefinite matrix |
F07MDF (DSYTRF) |
| real symmetric indefinite matrix, packed storage |
F07PDF (DSPTRF) |
| Solution of simultaneous linear equations: |
|
| after factorizing the matrix of coefficients: |
|
| complex band matrix |
F07BSF (ZGBTRS) |
| complex Hermitian indefinite matrix |
F07MSF (ZHETRS) |
| complex Hermitian indefinite matrix, packed storage |
F07PSF (ZHPTRS) |
| complex Hermitian positive-definite band matrix |
F07HSF (ZPBTRS) |
| complex Hermitian positive-definite matrix |
F07FSF (ZPOTRS) |
| complex Hermitian positive-definite matrix, packed storage |
F07GSF (ZPPTRS) |
| complex Hermitian positive-definite tridiagonal matrix |
F07JSF (ZPTTRS) |
| complex matrix |
F07ASF (ZGETRS) |
| complex symmetric indefinite matrix |
F07NSF (ZSYTRS) |
| complex symmetric indefinite matrix, packed storage |
F07QSF (ZSPTRS) |
| complex tridiagonal matrix |
F07CSF (ZGTTRS) |
| real band matrix |
F07BEF (DGBTRS) |
| real matrix |
F07AEF (DGETRS) |
| real symmetric indefinite matrix |
F07MEF (DSYTRS) |
| real symmetric indefinite matrix, packed storage |
F07PEF (DSPTRS) |
| real symmetric positive-definite band matrix |
F07HEF (DPBTRS) |
| real symmetric positive-definite matrix |
F07FEF (DPOTRS) |
| real symmetric positive-definite matrix, packed storage |
F07GEF (DPPTRS) |
| real symmetric positive-definite tridiagonal matrix |
F07JEF (DPTTRS) |
| real tridiagonal matrix |
F07CEF (DGTTRS) |
| complex band matrices |
F07BNF (ZGBSV) |
| complex Hermitian indefinite matrix |
F07MNF (ZHESV) |
| complex Hermitian indefinite matrix, packed storage |
F07PNF (ZHPSV) |
| complex Hermitian positive-definite band matrix |
F07HNF (ZPBSV) |
| complex Hermitian positive-definite matrix |
F07FNF (ZPOSV) |
| complex Hermitian positive-definite matrix, packed storage |
F07GNF (ZPPSV) |
| complex Hermitian positive-definite tridiagonal matrix |
F07JNF (ZPTSV) |
| complex matrix |
F07ANF (ZGESV) |
| complex symmetric indefinite matrix |
F07NNF (ZSYSV) |
| complex symmetric indefinite matrix, packed storage |
F07QNF (ZSPSV) |
| complex triangular band matrix |
F07VSF (ZTBTRS) |
| complex triangular matrix |
F07TSF (ZTRTRS) |
| complex triangular matrix, packed storage |
F07USF (ZTPTRS) |
| complex tridiagonal matrix |
F07CNF (ZGTSV) |
| real band matrix |
F07BAF (DGBSV) |
| real matrix |
F07AAF (DGESV) |
| real symmetric indefinite matrix |
F07MAF (DSYSV) |
| real symmetric indefinite matrix, packed storage |
F07PAF (DSPSV) |
| real symmetric positive-definite band matrix |
F07HAF (DPBSV) |
| real symmetric positive-definite matrix |
F07FAF (DPOSV) |
| real symmetric positive-definite matrix, packed storage |
F07GAF (DPPSV) |
| real symmetric positive-definite tridiagonal matrix |
F07JAF (DPTSV) |
| real triangular band matrix |
F07VEF (DTBTRS) |
| real triangular matrix |
F07TEF (DTRTRS) |
| real triangular matrix, packed storage |
F07UEF (DTPTRS) |
| real tridiagonal matrix |
F07CAF (DGTSV) |
| with condition and error estimation: |
|
| complex band matrix |
F07BPF (ZGBSVX) |
| complex Hermitian indefinite matrix |
F07MPF (ZHESVX) |
| complex Hermitian indefinite matrix, packed storage |
F07PPF (ZHPSVX) |
| complex Hermitian positive-definite band matrix |
F07HPF (ZPBSVX) |
| complex Hermitian positive-definite matrix |
F07FPF (ZPOSVX) |
| complex Hermitian positive-definite matrix, packed storage |
F07GPF (ZPPSVX) |
| complex Hermitian positive-definite tridiagonal matrix |
F07JPF (ZPTSVX) |
| complex matrix |
F07APF (ZGESVX) |
| complex symmetric indefinite matrix |
F07NPF (ZSYSVX) |
| complex symmetric indefinite matrix, packed storage |
F07QPF (ZSPSVX) |
| complex tridiagonal matrix |
F07CPF (ZGTSVX) |
| real band matrix |
F07BBF (DGBSVX) |
| real matrix |
F07ABF (DGESVX) |
| real symmetric indefinite matrix |
F07MBF (DSYSVX) |
| real symmetric indefinite matrix, packed storage |
F07PBF (DSPSVX) |
| real symmetric positive-definite band matrix |
F07HBF (DPBSVX) |
| real symmetric positive-definite matrix |
F07FBF (DPOSVX) |
| real symmetric positive-definite matrix, packed storage |
F07GBF (DPPSVX) |
| real symmetric positive-definite tridiagonal matrix |
F07JBF (DPTSVX) |
| real tridiagonal matrix |
F07CBF (DGTSVX) |
| Backtransformation of eigenvectors from those of balanced forms: |
|
| complex matrix |
F08NWF (ZGEBAK) |
| complex matrix |
F08WWF (ZGGBAK) |
| real matrix |
F08NJF (DGEBAK) |
| real matrix |
F08WJF (DGGBAK) |
| Balancing: |
|
| complex general matrix |
F08NVF (ZGEBAL) |
| complex general matrix |
F08WVF (ZGGBAL) |
| real general matrix |
F08NHF (DGEBAL) |
| real general matrix |
F08WHF (DGGBAL) |
| Eigenvalue problems for condensed forms of matrices: |
|
| complex Hermitian matrix: |
|
| eigenvalues and eigenvectors: |
|
| band matrix: |
|
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage |
F08HQF (ZHBEVD) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm
|
F08HNF (ZHBEV) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration
|
F08HPF (ZHBEVX) |
| general matrix: |
|
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm |
F08FQF (ZHEEVD) |
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage |
F08GQF (ZHPEVD) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm
|
F08FNF (ZHEEV) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration
|
F08FPF (ZHEEVX) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration, using packed storage
|
F08GPF (ZHPEVX) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm, using packed storage
|
F08GNF (ZHPEV) |
| all eigenvalues and eigenvectors using Relatively Robust Representations or selected eigenvalues and eigenvectors
by bisection and inverse iteration
|
F08FRF (ZHEEVR) |
| eigenvalues only: |
|
| band matrix: |
|
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm
|
F08HNF (ZHBEV) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, or selected eigenvalues by bisection
|
F08HPF (ZHBEVX) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, using packed storage
|
F08HQF (ZHBEVD) |
| general matrix: |
|
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm
|
F08FNF (ZHEEV) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm
|
F08FQF (ZHEEVD) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, or selected eigenvalues by bisection
|
F08FPF (ZHEEVX) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, or selected eigenvalues by bisection
|
F08FRF (ZHEEVR) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, or selected eigenvalues by bisection, using packed storage
|
F08GPF (ZHPEVX) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, using packed storage
|
F08GNF (ZHPEV) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, using packed storage
|
F08GQF (ZHPEVD) |
| complex upper Hessenberg matrix, reduced from complex general matrix: |
|
| eigenvalues and Schur factorization |
F08PSF (ZHSEQR) |
| selected right and/or left eigenvectors by inverse iteration |
F08PXF (ZHSEIN) |
| real bidiagonal matrix: |
|
| singular value decomposition: |
|
| after reduction from complex general matrix |
F08MSF (ZBDSQR) |
| after reduction from real general matrix |
F08MEF (DBDSQR) |
| after reduction from real general matrix, using divide-and-conquer |
F08MDF (DBDSDC) |
| real symmetric matrix: |
|
| eigenvalues and eigenvectors: |
|
| band matrix: |
|
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm |
F08HCF (DSBEVD) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm
|
F08HAF (DSBEV) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration
|
F08HBF (DSBEVX) |
| general matrix: |
|
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm |
F08FCF (DSYEVD) |
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage |
F08GCF (DSPEVD) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm
|
F08FAF (DSYEV) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration
|
F08FBF (DSYEVX) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration, using packed storage
|
F08GBF (DSPEVX) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm, using packed storage
|
F08GAF (DSPEV) |
| all eigenvalues and eigenvectors using Relatively Robust Representations or selected eigenvalues and eigenvectors
by bisection and inverse iteration
|
F08FDF (DSYEVR) |
| eigenvalues only: |
|
| band matrix: |
|
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm
|
F08HAF (DSBEV) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm
|
F08HCF (DSBEVD) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, or selected eigenvalues by bisection
|
F08HBF (DSBEVX) |
| general matrix: |
|
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm
|
F08FAF (DSYEV) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm
|
F08FCF (DSYEVD) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, or selected eigenvalues by bisection
|
F08FBF (DSYEVX) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, or selected eigenvalues by bisection
|
F08FDF (DSYEVR) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, or selected eigenvalues by bisection, using packed storage
|
F08GBF (DSPEVX) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, using packed storage
|
F08GAF (DSPEV) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, using packed storage
|
F08GCF (DSPEVD) |
| real symmetric tridiagonal matrix: |
|
| eigenvalues and eigenvectors: |
|
| after reduction from complex Hermitian matrix: |
|
| all eigenvalues and eigenvectors |
F08JSF (ZSTEQR) |
| all eigenvalues and eigenvectors, positive-definite matrix |
F08JUF (ZPTEQR) |
| all eigenvalues and eigenvectors, using divide-and-conquer |
F08JVF (ZSTEDC) |
| all eigenvalues and eigenvectors, using Relatively Robust Representations |
F08JYF (ZSTEGR) |
| selected eigenvectors by inverse iteration |
F08JXF (ZSTEIN) |
| all eigenvalues and eigenvectors |
F08JEF (DSTEQR) |
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm |
F08JCF (DSTEVD) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm
|
F08JAF (DSTEV) |
| all eigenvalues and eigenvectors by root-free
Q
R
algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration
|
F08JBF (DSTEVX) |
| all eigenvalues and eigenvectors using Relatively Robust Representations or selected eigenvalues and eigenvectors
by bisection and inverse iteration
|
F08JDF (DSTEVR) |
| all eigenvalues and eigenvectors, by divide-and-conquer |
F08JHF (DSTEDC) |
| all eigenvalues and eigenvectors, positive-definite matrix |
F08JGF (DPTEQR) |
| all eigenvalues and eigenvectors, using Relatively Robust Representations |
F08JLF (DSTEGR) |
| selected eigenvectors by inverse iteration |
F08JKF (DSTEIN) |
| eigenvalues only: |
|
| all eigenvalues by root-free
Q
R
algorithm
|
F08JFF (DSTERF) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm
|
F08JAF (DSTEV) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm
|
F08JCF (DSTEVD) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, or selected eigenvalues by bisection
|
F08JBF (DSTEVX) |
| all eigenvalues by the Pal–Walker–Kahan variant of the
Q
L
or
Q
R
algorithm, or selected eigenvalues by bisection
|
F08JDF (DSTEVR) |
| selected eigenvalues by bisection |
F08JJF (DSTEBZ) |
| real upper Hessenberg matrix, reduced from real general matrix: |
|
| eigenvalues and Schur factorization |
F08PEF (DHSEQR) |
| selected right and/or left eigenvectors by inverse iteration |
F08PKF (DHSEIN) |
| Eigenvalue problems for nonsymmetric matrices: |
|
| complex matrix: |
|
| all eigenvalues and left/right eigenvectors |
F08NNF (ZGEEV) |
| all eigenvalues and left/right eigenvectors, plus balancing transformation and reciprocal condition numbers |
F08NPF (ZGEEVX) |
| all eigenvalues, Schur form and Schur vectors |
F08PNF (ZGEES) |
| all eigenvalues, Schur form, Schur vectors and reciprocal condition numbers |
F08PPF (ZGEESX) |
| real matrix: |
|
| all eigenvalues and left/right eigenvectors |
F08NAF (DGEEV) |
| all eigenvalues and left/right eigenvectors, plus balancing transformation and reciprocal condition numbers |
F08NBF (DGEEVX) |
| all eigenvalues, real Schur form and Schur vectors |
F08PAF (DGEES) |
| all eigenvalues, real Schur form, Schur vectors and reciprocal condition numbers |
F08PBF (DGEESX) |
| Eigenvalues and generalized Schur factorization, |
|
| complex generalized upper Hessenberg form |
F08XSF (ZHGEQZ) |
| real generalized upper Hessenberg form |
F08XEF (DHGEQZ) |
| General Gauss-Markov linear model: |
|
| solves a complex general Gauss-Markov linear model problem |
F08ZPF (ZGGGLM) |
| solves a real general Gauss-Markov linear model problem |
F08ZBF (DGGGLM) |
| Generalized eigenvalue problems for condensed forms of matrices: |
|
| complex Hermitian-definite eigenproblems: |
|
| banded matrices: |
|
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm |
F08UQF (ZHBGVD) |
| all eigenvalues and eigenvectors by reduction to tridiagonal form |
F08UNF (ZHBGV) |
| selected eigenvalues and eigenvectors by reduction to tridiagonal form |
F08UPF (ZHBGVX) |
| general matrices: |
|
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm |
F08SQF (ZHEGVD) |
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm, packed storage format |
F08TQF (ZHPGVD) |
| all eigenvalues and eigenvectors by reduction to tridiagonal form |
F08SNF (ZHEGV) |
| all eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format |
F08TNF (ZHPGV) |
| selected eigenvalues and eigenvectors by reduction to tridiagonal form |
F08SPF (ZHEGVX) |
| selected eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format |
F08TPF (ZHPGVX) |
| real symmetric-definite eigenproblems: |
|
| banded matrices: |
|
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm |
F08UCF (DSBGVD) |
| all eigenvalues and eigenvectors by reduction to tridiagonal form |
F08UAF (DSBGV) |
| selected eigenvalues and eigenvectors by reduction to tridiagonal form |
F08UBF (DSBGVX) |
| general matrices: |
|
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm |
F08SCF (DSYGVD) |
| all eigenvalues and eigenvectors by a divide-and-conquer algorithm, packed storage format |
F08TCF (DSPGVD) |
| all eigenvalues and eigenvectors by reduction to tridiagonal form |
F08SAF (DSYGV) |
| all eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format |
F08TAF (DSPGV) |
| selected eigenvalues and eigenvectors by reduction to tridiagonal form |
F08SBF (DSYGVX) |
| selected eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format |
F08TBF (DSPGVX) |
| Generalized eigenvalue problems for nonsymmetric matrix pairs: |
|
| complex nonsymmetric matrix pairs: |
|
| all eigenvalues and left/right eigenvectors |
F08WNF (ZGGEV) |
| all eigenvalues and left/right eigenvectors, plus the balancing transformation and reciprocal condition numbers |
F08WPF (ZGGEVX) |
| all eigenvalues, generalized Schur form and Schur vectors |
F08XNF (ZGGES) |
| all eigenvalues, generalized Schur form, Schur vectors and reciprocal condition numbers |
F08XPF (ZGGESX) |
| real nonsymmetric matrix pairs: |
|
| all eigenvalues and left/right eigenvectors |
F08WAF (DGGEV) |
| all eigenvalues and left/right eigenvectors, plus the balancing transformation and reciprocal condition numbers |
F08WBF (DGGEVX) |
| all eigenvalues, generalized real Schur form and left/right Schur vectors |
F08XAF (DGGES) |
| all eigenvalues, generalized real Schur form and left/right Schur vectors, plus reciprocal condition numbers |
F08XBF (DGGESX) |
| Generalized
Q
R
factorization:
|
|
| complex matrices: |
F08ZSF (ZGGQRF) |
| real matrices: |
F08ZEF (DGGQRF) |
| Generalized
R
Q
factorization:
|
|
| complex matrices: |
F08ZTF (ZGGRQF) |
| real matrices: |
F08ZFF (DGGRQF) |
| Generalized singular value decomposition |
|
| after reduction from complex general matrix: |
|
| complex triangular or trapezoidal matrix pair |
F08YSF (ZTGSJA) |
| after reduction from real general matrix: |
|
| real triangular or trapezoidal matrix pair |
F08YEF (DTGSJA) |
| complex matrix pair |
F08VNF (ZGGSVD) |
| real matrix pair |
F08VAF (DGGSVD) |
| reduction of a pair of general matrices to triangular or trapezoidal form: |
|
| complex matrices |
F08VSF (ZGGSVP) |
| real matrices |
F08VEF (DGGSVP) |
| Least squares problems with linear equality constraints |
|
| complex matrices: |
|
| minimum norm solution subject to linear equality constraints using a generalized
R
Q
factorization
|
F08ZNF (ZGGLSE) |
| real matrices: |
|
| minimum norm solution subject to linear equality constraints using a generalized
R
Q
factorization
|
F08ZAF (DGGLSE) |
| Least squares problems: |
|
| complex matrices: |
|
| apply orthogonal matrix |
F08BXF (ZUNMRZ) |
| minimum norm solution using a complete orthogonal factorization |
F08BNF (ZGELSY) |
| minimum norm solution using the singular value decomposition |
F08KNF (ZGELSS) |
| minimum norm solution using the singular value decomposition (divide-and-conquer) |
F08KQF (ZGELSD) |
| reduction of upper trapezoidal matrix to upper triangular form |
F08BVF (ZTZRZF) |
| real matrices: |
|
| apply orthogonal matrix |
F08BKF (DORMRZ) |
| minimum norm solution using a complete orthogonal factorization |
F08BAF (DGELSY) |
| minimum norm solution using the singular value decomposition |
F08KAF (DGELSS) |
| minimum norm solution using the singular value decomposition (divide-and-conquer) |
F08KCF (DGELSD) |
| reduction of upper trapezoidal matrix to upper triangular form |
F08BHF (DTZRZF) |
| Left and right eigenvectors of a pair of matrices: |
|
| complex upper triangular matrices |
F08YXF (ZTGEVC) |
| real quasi-triangular matrices |
F08YKF (DTGEVC) |
|
L
Q
factorization and related operations:
|
|
| complex matrices: |
|
| apply unitary matrix |
F08AXF (ZUNMLQ) |
| factorization |
F08AVF (ZGELQF) |
| form all or part of unitary matrix |
F08AWF (ZUNGLQ) |
| real matrices: |
|
| apply orthogonal matrix |
F08AKF (DORMLQ) |
| factorization |
F08AHF (DGELQF) |
| form all or part of orthogonal matrix |
F08AJF (DORGLQ) |
| Operations on eigenvectors of a real symmetric or complex Hermitian matrix, or singular vectors of a general matrix: |
|
| estimate condition numbers |
F08FLF (DDISNA) |
| Operations on generalized Schur factorization of a general matrix pair: |
|
| complex matrix: |
|
| estimate condition numbers of eigenvalues and/or eigenvectors |
F08YYF (ZTGSNA) |
| re-order Schur factorization |
F08YTF (ZTGEXC) |
| re-order Schur factorization, compute generalized eigenvalues and condition numbers |
F08YUF (ZTGSEN) |
| real matrix: |
|
| estimate condition numbers of eigenvalues and/or eigenvectors |
F08YLF (DTGSNA) |
| re-order Schur factorization |
F08YFF (DTGEXC) |
| re-order Schur factorization, compute generalized eigenvalues and condition numbers |
F08YGF (DTGSEN) |
| Operations on Schur factorization of a general matrix: |
|
| complex matrix: |
|
| compute left and/or right eigenvectors |
F08QXF (ZTREVC) |
| estimate sensitivities of eigenvalues and/or eigenvectors |
F08QYF (ZTRSNA) |
| re-order Schur factorization |
F08QTF (ZTREXC) |
| re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities |
F08QUF (ZTRSEN) |
| real matrix: |
|
| compute left and/or right eigenvectors |
F08QKF (DTREVC) |
| estimate sensitivities of eigenvalues and/or eigenvectors |
F08QLF (DTRSNA) |
| re-order Schur factorization |
F08QFF (DTREXC) |
| re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities |
F08QGF (DTRSEN) |
| Overdetermined and underdetermined linear systems |
|
| complex matrices: |
|
| solves an overdetermined or undetermined complex linear system |
F08ANF (ZGELS) |
| real matrices: |
|
| solves an overdetermined or undetermined real linear system |
F08AAF (DGELS) |
|
Q
L
factorization and related operations:
|
|
| complex matrices: |
|
| apply unitary matrix |
F08CUF (ZUNMQL) |
| factorization |
F08CSF (ZGEQLF) |
| form all or part of unitary matrix |
F08CTF (ZUNGQL) |
| real matrices: |
|
| apply orthogonal matrix |
F08CGF (DORMQL) |
| factorization |
F08CEF (DGEQLF) |
| form all or part of orthogonal matrix |
F08CFF (DORGQL) |
|
Q
R
factorization and related operations:
|
|
| complex matrices: |
|
| apply unitary matrix |
F08AUF (ZUNMQR) |
| factorization |
F08ASF (ZGEQRF) |
| factorization, |
|
| with column pivoting, using BLAS-3 |
F08BTF (ZGEQP3) |
| factorization, with column pivoting |
F08BSF (ZGEQPF) |
| form all or part of unitary matrix |
F08ATF (ZUNGQR) |
| real matrices: |
|
| apply orthogonal matrix |
F08AGF (DORMQR) |
| factorization |
F08AEF (DGEQRF) |
| factorization, |
|
| with column pivoting, using BLAS-3 |
F08BFF (DGEQP3) |
| factorization, with column pivoting |
F08BEF (DGEQPF) |
| form all or part of orthogonal matrix |
F08AFF (DORGQR) |
| Reduction of a pair of general matrices to generalized upper Hessenberg form, |
|
| orthogonal reduction, real matrices |
F08WEF (DGGHRD) |
| unitary reduction, complex matrices |
F08WSF (ZGGHRD) |
| Reduction of eigenvalue problems to condensed forms, and related operations: |
|
| complex general matrix to upper Hessenberg form: |
|
| apply orthogonal matrix |
F08NUF (ZUNMHR) |
| form orthogonal matrix |
F08NTF (ZUNGHR) |
| reduce to Hessenberg form |
F08NSF (ZGEHRD) |
| complex Hermitian band matrix to real symmetric tridiagonal form |
F08HSF (ZHBTRD) |
| complex Hermitian matrix to real symmetric tridiagonal form: |
|
| apply unitary matrix |
F08FUF (ZUNMTR) |
| apply unitary matrix, packed storage |
F08GUF (ZUPMTR) |
| form unitary matrix |
F08FTF (ZUNGTR) |
| form unitary matrix, packed storage |
F08GTF (ZUPGTR) |
| reduce to tridiagonal form |
F08FSF (ZHETRD) |
| reduce to tridiagonal form, packed storage |
F08GSF (ZHPTRD) |
| complex rectangular band matrix to real upper bidiagonal form |
F08LSF (ZGBBRD) |
| complex rectangular matrix to real bidiagonal form: |
|
| apply unitary matrix |
F08KUF (ZUNMBR) |
| form unitary matrix |
F08KTF (ZUNGBR) |
| reduce to bidiagonal form |
F08KSF (ZGEBRD) |
| real general matrix to upper Hessenberg form: |
|
| apply orthogonal matrix |
F08NGF (DORMHR) |
| form orthogonal matrix |
F08NFF (DORGHR) |
| reduce to Hessenberg form |
F08NEF (DGEHRD) |
| real rectangular band matrix to upper bidiagonal form |
F08LEF (DGBBRD) |
| real rectangular matrix to bidiagonal form: |
|
| apply orthogonal matrix |
F08KGF (DORMBR) |
| form orthogonal matrix |
F08KFF (DORGBR) |
| reduce to bidiagonal form |
F08KEF (DGEBRD) |
| real symmetric band matrix to symmetric tridiagonal form |
F08HEF (DSBTRD) |
| real symmetric matrix to symmetric tridiagonal form: |
|
| apply orthogonal matrix |
F08FGF (DORMTR) |
| apply orthogonal matrix, packed storage |
F08GGF (DOPMTR) |
| form orthogonal matrix |
F08FFF (DORGTR) |
| form orthogonal matrix, packed storage |
F08GFF (DOPGTR) |
| reduce to tridiagonal form |
F08FEF (DSYTRD) |
| reduce to tridiagonal form, packed storage |
F08GEF (DSPTRD) |
| Reduction of generalized eigenproblems to standard eigenproblems: |
|
| complex Hermitian-definite banded generalized eigenproblem
A
x
=
λ
B
x
|
F08USF (ZHBGST) |
| complex Hermitian-definite generalized eigenproblem
A
x
=
λ
B
x
,
A
B
x
=
λ
x
or
B
A
x
=
λ
x
|
F08SSF (ZHEGST) |
| complex Hermitian-definite generalized eigenproblem
A
x
=
λ
B
x
,
A
B
x
=
λ
x
or
B
A
x
=
λ
x
, packed storage
|
F08TSF (ZHPGST) |
| real symmetric-definite banded generalized eigenproblem
A
x
=
λ
B
x
|
F08UEF (DSBGST) |
| real symmetric-definite generalized eigenproblem
A
x
=
λ
B
x
,
A
B
x
=
λ
x
or
B
A
x
=
λ
x
|
F08SEF (DSYGST) |
| real symmetric-definite generalized eigenproblem
A
x
=
λ
B
x
,
A
B
x
=
λ
x
or
B
A
x
=
λ
x
, packed storage
|
F08TEF (DSPGST) |
|
R
Q
factorization and related operations:
|
|
| complex matrices: |
|
| apply unitary matrix |
F08CXF (ZUNMRQ) |
| factorization |
F08CVF (ZGERQF) |
| form all or part of unitary matrix |
F08CWF (ZUNGRQ) |
| real matrices: |
|
| apply orthogonal matrix |
F08CKF (DORMRQ) |
| factorization |
F08CHF (DGERQF) |
| form all or part of orthogonal matrix |
F08CJF (DORGRQ) |
| Singular value decomposition |
|
| complex matrix: |
|
| using a divide-and-conquer algorithm |
F08KRF (ZGESDD) |
| using bidiagonal
Q
R
iteration
|
F08KPF (ZGESVD) |
| real matrix: |
|
| using a divide-and-conquer algorithm |
F08KDF (DGESDD) |
| using bidiagonal
Q
R
iteration
|
F08KBF (DGESVD) |
| Solve generalized Sylvester equation: |
|
| complex matrices |
F08YVF (ZTGSYL) |
| real matrices |
F08YHF (DTGSYL) |
| Solve reduced form of Sylvester matrix equation: |
|
| complex matrices |
F08QVF (ZTRSYL) |
| real matrices |
F08QHF (DTRSYL) |
| Split Cholesky factorization: |
|
| complex Hermitian positive-definite band matrix |
F08UTF (ZPBSTF) |
| real symmetric positive-definite band matrix |
F08UFF (DPBSTF) |
| Apply iterative refinement to the solution and compute error estimates, after factorizing the matrix of coefficients, |
|
| real sparse nonsymmetric matrix in CCS format |
F11MHF |
| Basic routines for real sparse nonsymmetric linear systems |
|
| Matrix-matrix multiplier for real sparse nonsymmetric matrices in CCS format |
F11MKF |
| Basic routines for complex Hermitian linear systems, |
|
| diagnostic routine
|
F11GTF |
| setup routine
|
F11GRF |
| Basic routines for complex non-Hermitian linear systems, |
|
| diagnostic routine
|
F11BTF |
| reverse communication RGMRES, CGS, Bi-CGSTAB
(ℓ)
or TFQMR solver routine
|
F11BSF |
| setup routine
|
F11BRF |
| Basic routines for real nonsymmetric linear systems, |
|
| diagnostic routine
|
F11BFF |
| reverse communication RGMRES, CGS, Bi-CGSTAB
(ℓ)
or TFQMR solver routine
|
F11BEF |
| setup routine
|
F11BDF |
| Basic routines for real symmetric linear systems, |
|
| diagnostic routine
|
F11GFF |
| reverse communication CG or SYMMLQ solver |
F11GEF |
| setup routine
|
F11GDF |
| Black Box routines for complex Hermitian linear systems, |
|
| CG or SYMMLQ solver |
|
| with incomplete Cholesky preconditioning |
F11JQF |
| with no preconditioning, Jacobi or SSOR preconditioning |
F11JSF |
| Black Box routines for complex non-Hermitian linear systems, |
|
| RGMRES, CGS, Bi-CGSTAB
(ℓ)
or TFQMR solver
|
|
| with incomplete
L
U
preconditioning
|
F11DQF |
| with no preconditioning, Jacobi, or SSOR preconditioning |
F11DSF |
| Black Box routines for real nonsymmetric linear systems, |
|
| RGMRES, CGS, Bi-CGSTAB
(ℓ)
or TFQMR solver
|
|
| with incomplete
L
U
preconditioning
|
F11DCF |
| with no preconditioning, Jacobi, or SSOR preconditioning |
F11DEF |
| Black Box routines for real symmetric linear systems, |
|
| CG or SYMMLQ solver |
|
| with incomplete Cholesky preconditioning |
F11JCF |
| with no preconditioning, Jacobi, or SSOR preconditioning |
F11JEF |
| Compute a norm or the element of largest absolute value, |
|
| real sparse nonsymmetric matrix in CCS format |
F11MLF |
| Condition number estimation, after factorizing the matrix of coefficients, |
|
| real sparse nonsymmetric matrix in CCS format |
F11MGF |
|
L
U
factorization,
|
|
| diagnostic routine, |
|
| real sparse nonsymmetric matrix in CCS format |
F11MMF |
| real sparse nonsymmetric matrix in CCS format |
F11MEF |
| setup routine, |
|
| real sparse nonsymmetric matrices in CCS format |
F11MDF |
| matrix-vector multiplier for complex Hermitian matrices in SCS format |
F11XSF |
| reverse communication CG or SYMMLQ solver routine
|
F11GSF |
| Solution of simultaneous linear equations, after factorizing the matrix of coefficients, |
|
| real sparse nonsymmetric matrix in CCS format |
F11MFF |
| Utility routine for complex Hermitian linear systems, |
|
| incomplete Cholesky factorization |
F11JNF |
| solver for linear systems involving preconditioning matrix from F11JNF
|
F11JPF |
| solver for linear systems involving SSOR preconditioning matrix |
F11JRF |
| sort routine for complex Hermitian matrices in SCS format |
F11ZPF |
| Utility routine for complex non-Hermitian linear systems, |
|
| incomplete
L
U
factorization
|
F11DNF |
| matrix-vector multiplier for complex non-Hermitian matrices in CS format |
F11XNF |
| solver for linear systems involving iterated Jacobi method |
F11DXF |
| solver for linear systems involving preconditioning matrix from F11DNF
|
F11DPF |
| solver for linear systems involving SSOR preconditioning matrix |
F11DRF |
| sort routine for complex non-Hermitian matrices in CS format |
F11ZNF |
| Utility routine for real nonsymmetric linear systems, |
|
| incomplete
L
U
factorization
|
F11DAF |
| matrix-vector multiplier for real nonsymmetric matrices in CS format |
F11XAF |
| solver for linear systems involving iterated Jacobi method |
F11DKF |
| solver for linear systems involving preconditioning matrix from F11DAF
|
F11DBF |
| solver for linear systems involving SSOR preconditioning matrix |
F11DDF |
| sort routine for real nonsymmetric matrices in CS format |
F11ZAF |
| Utility routine for real symmetric linear systems, |
|
| incomplete Cholesky factorization |
F11JAF |
| matrix-vector multiplier for real symmetric matrices in SCS format |
F11XEF |
| solver for linear systems involving preconditioning matrix from F11JAF
|
F11JBF |
| solver for linear systems involving SSOR preconditioning matrix |
F11JDF |
| sort routine for real symmetric matrices in SCS format |
F11ZBF |